Natural Disasters: Hurricanes and Tornadoes

What is a Natural Disaster?

A disaster caused by nature

Examples

- Earthquakes
- Extreme Heat
- Floods
- Hurricanes

- Volcanoes
- Wildfires
- Winter Weather

- Landslides & Mudslides
- Tornadoes
- Tsunamis
- Typhoons

Effects of Natural Disasters

- Physical destruction
- Emotional effects loss of belongings and trauma of possible future disasters
- Economic concerns local areas affected most
- Indirect effect disruption of utility services
- Hygiene
- Environmental effects loss of habitats and altered landscape

Possible causes?

Floods

Fires

Droughts

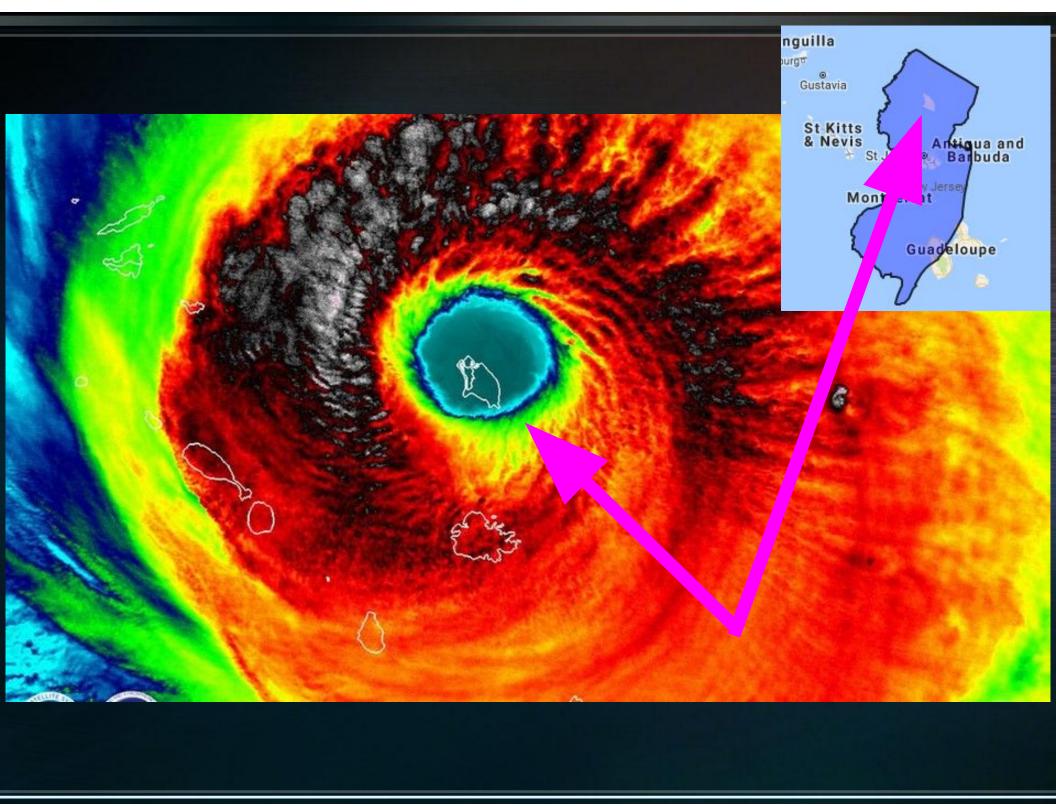
Weather events

Hurricanes

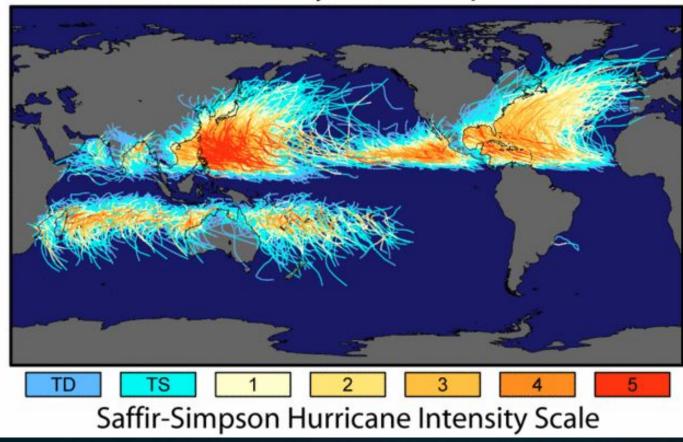
- Low pressure areas that form over warm ocean waters in the summer and early fall
- Caused by high winds over warm water

The "Eye"

 The strongest winds occur in the *eyewall* of the storm


 The eye is the warmest and calmest part of a hurricane

TRACKING HURRICANE IRMA



Areas of Activity

- Areas in the world most affected by hurricanes are
 - Central America
 - The Caribbean
 - Mexico
 - Eastern USA seaboard

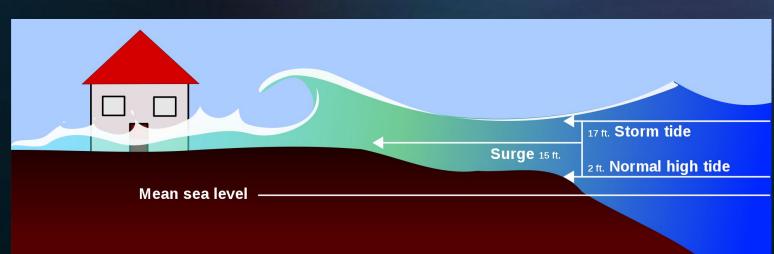
Measuring Hurricane Intensity

- Saffir-Simpson Scale
 estimates how much
 damage and flooding is
 expected using the wind
 speed
- Rated as <u>Category 1-5</u>

Saffir-Simpson Hurricane Scale						
Category	Wind speed Storm surge					
	mph	ft				
	(km/h)	(m)				
5	≥156 (≥250)	>18 (>5.5)				
4	131–155	13–18				
	(210-249)	(4.0-5.5)				
3	111–130	9–12				
3	(178-209)	(2.7-3.7)				
2	96–110	6-8				
-	(154–177)	(1.8-2.4)				
1	74-95	4-5				
((8))	(119–153)	(1.2–1.5)				
Additional classifications						
Tropical	39-73	0-3				
storm	(63–117)	(0-0.9)				
Tropical	0-38	0				
depression	(0-62)	(0)				

Why name Hurricanes?

- Easier to refer to them
- Usually short and easy names to pronounce
- Used to be all female
- Used to change names
- Intense storms have their names retired


2011	2012	2013	2014	2015	2016
Arlene	Alberto	Andrea	Arthur	Ana	Alex
Bret	Beryl	Barry	Bertha	Bill	Bonnie
Cindy	Chris	Chantal	Cristobal	Claudette	Colin
Don	Debby	Dorian	Dolly	Danny	Danielle
Emily Ernesto		Erin	Edouard	Erika	Earl
Franklin Florence		Fernand	Fay	Fred	Fiona
Gert	Gordon	Gabrielle	Gonzalo	Grace	Gaston
Harvey	Helene	Humberto	Hanna	Henri	Hermine
Irene	Isaac	Ingrid	Isalas	Ida	Ian
Jose	Joyce	Jerry	Josephine	Joaquin	Julia
Katia	Kirk	Karen	Kyle	Kate	Karl
Lee	Leslie	Lorenzo	Laura	Larry	Lisa
Maria	Michael	Melissa	Marco	Mindy	Matthew
Nate	Nadine	Nestor	Nana	Nicholas	Nicole
Ophelia	Oscar	Olga	Omar	Odette	Otto
Philippe	Patty	Pablo	Paulette	Peter	Paula
Rina	Rafael	Rebekah	Rene	Rose	Richard
Sean	Sandy	Sebastien	Sally	Sam	Shary
Tammy	Tony	Tanya	Teddy	Teresa	Tobias
Vince	Valerie	Van	Vicky	Victor	Virginie
Whitney	William	Wendy	Wilfred	Wanda	Walter

The six lists are used in rotation. Thus, the 2011 list will be used again in 2017.

Storm Surges

- Water blown onshore by high winds making them rise rapidly
 - Destroys lower floors of buildings
 - Destroy foundations to wash houses away
 - Trap residents from leaving low-lying areas

Hurricanes by Other Names

• Hurricane

 North Atlantic Ocean, Caribbean Sea, Gulf of Mexico, Northeast Pacific Ocean

Typhoons

 Northwest Pacific Ocean and west of International Date Line

Tropical Cyclones

Australia and Indian Ocean

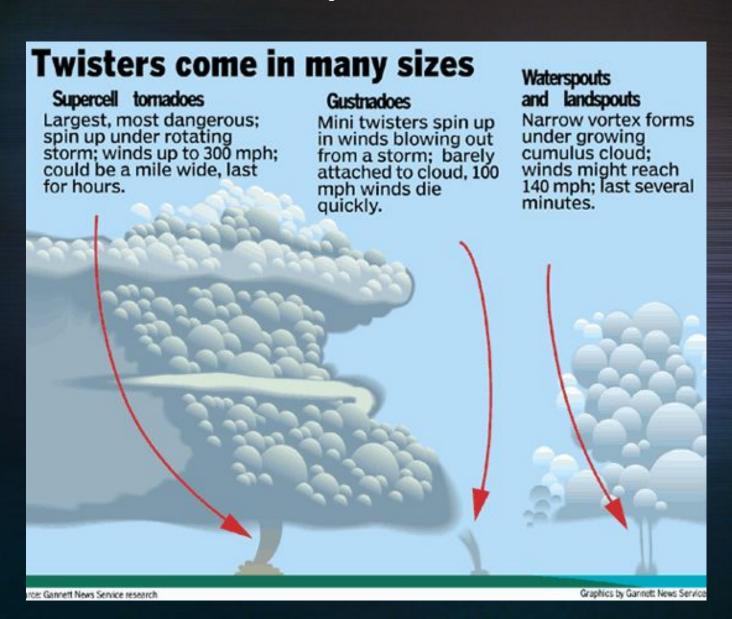
Willy-Willies

Australia

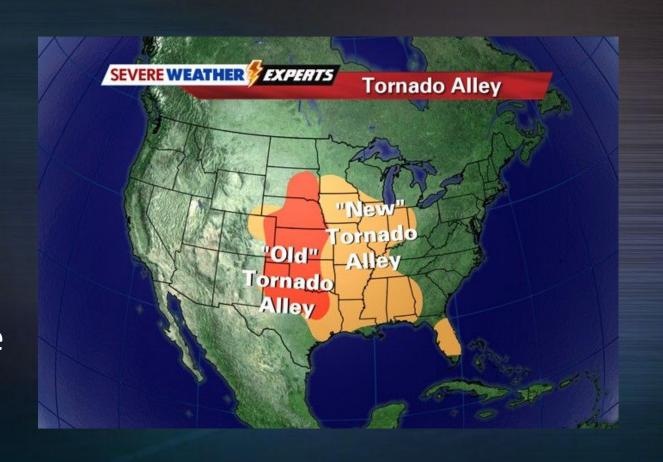
<u>Tornadoes</u>

- Violent, rotating columns of air extending from a thunderstorm to the ground
- Can happen anytime with little to no warning
- Peak season
 - South: March May
 - North: late spring early summer

 Form when moist air from the Gulf of Mexico & dry air from Canada meet and winds cause it to change


Danger Signs

- Dark greenish sky
- Large hail
- Large, dark, low-lying cloud
 - Especially if it is rotating!
- Loud roar similar to freight train


Tornado Size and Shape

- Depend on:
 - Their environment
 - Wind speed
 - Dirt and dust in the environment

Tornado Alley

- The area where tornadoes are more frequent is called *Tornado* Alley
- It has been updated to include newer areas

Tornado Intensity

- Dr. T. Theodore Fujita created a scale in 1971 and it has been used since to measure intensity of tornadoes
- It is based on how much damage is caused

Fujita (F) Scale

Level	Wind Speed	Possible Damage			
FO	40 - 72 mph	Light damage: Tears branches from trees; rips shallow- rooted trees from the ground; can damage sign-posts, traffic signals and chimneys			
F1	73 - 112 mph	Moderate damage: Roofing materials and vinyl siding can be displaced; mobile homes are highly vulnerable and can easily be knocked from the foundation or toppled; motorists can be sent careening off road and possibly flipped over			
F2	113 - 157 mph	Considerable damage: Well established trees are easily uprooted; mobile homes are dessimated; entire roofs can be ripped off houses; train cars and trucking hauls are knocked over; small objects become dangerous missiles			
F3	158 - 206 mph	Severe damage: Forests are destroyed as a majority trees are ripped from the ground; entire trains are derailed and knocked over; walls and roofs are torn from houses			
F4	207 - 260 mph	Devastating damage: Houses and other small structures can be razed entirely; automobiles are propelled through the air.			
F5	261 - 318 mph	Incredible damage: Cars become projectiles as they are hurled through the air; entire houses are completely destroyed after being ripped from the foundation and sent tumbling into the distance; steel-reinforced concrete structures can be seriously damaged.			

Source: NOAA

Storm Chasers

 Follow storms to observe them and sometimes understand the science of them

Different Types of Tornadoes

- Multiple Vortex
 <u>Tornadoes</u>: 2+ spinning columns around a common center
- Waterspout Tornadoformed over water, not destructive

Different Types of Tornadoes

- <u>Landspout Tornado</u>similar to waterspout but winds can cause damage
- <u>Dust-Devil Tornado</u>twisting columns of air when sun heats dry land

Different Types of Tornadoes

 Gustnado- updraft of air not connected to a cloud, lasts a few seconds