Acceleration Worksheet	Name Period Date	
Equations: Acceleration = Final velocity – Initial velocity Time	Time = Final Velocity – Initial Velocity Acceleration	
Final Velocity = Acceleration * Time + Initial Velocity		
Problems: In order to receive credit for this worksheet you MUST show your work. You can use a calculator but you must show all of the steps in the spaces provided.		
1. A roller coaster car rapidly picks up speed as it rolls down a slope. As it starts down the slope, its speed is 4 m/s. But 3 seconds later, at the bottom of the slope, its speed is 22 m/s. What is its average acceleration?		
2. A cyclist accelerates from 0 m/s to 8 m/s in 3 seconds. What is his acceleration? Is this acceleration higher than that of a car which accelerates from 0 to 30 m/s in 8 seconds?		
3. A car advertisement states that a certain car car Find the car's average acceleration.	accelerate from rest to 70 km/h in 7 seconds.	
4. A lizard accelerates from 2 m/s to 10 m/s in 4 s acceleration?	econds. What is the lizard's average	
5. If a Ferrari, with an initial velocity of 10 m/s, as what will its final velocity be?	ccelerates at a rate of 50 m/s/s for 3 seconds,	

Speed= distance/time (Units are m/s)
Find the speed of a car that traveled 10 meters is 2 seconds.
Find the distance a car traveled if its speed was 25m/s and traveled for 4 seconds.
Average speed-
Instantaneous speed-
Acceleration- the objects speed or direction changes (Units are m/s ²⁾ (final speed-initial speed)/time
Calculate the acceleration of an object that was traveling 5m/s then starting going 20 m/s and the change in speed took 3 seconds.
Gravity- force that affects everything that has mass(on Earth it is 9.8m/s²)