The Formation of Fossil Fuels

5.7A

If you have ever walked along the bottom of a cliff, you may have

noticed that the rocks form layers. Different layers may have different colors or textures. They may be made

of bits of other rocks.

Rocks form layers like these over millions of years. As the layers build up, the **pressure** on the bottom layers increases. The pressure on the rocks causes their temperatures to increase as well. Sometimes, rock layers form over the remains of plants and animals. Scientists call these remains *organic matter*. High

pressures and temperatures can change organic matter into three very important kinds of things: coal, oil, and natural gas.

Coal, oil, and natural gas are also called fossil fuels. Why do you think this is so?

What are fossil fuels?

Fossils are the remains of creatures that lived long ago. So, fossils include organic matter buried beneath layers of rocks. A *fuel* is a source of energy. Without fossil fuels, most people could not drive their cars. They could not turn on their lights or heat their homes. This is because most of the energy needed to do these things comes from fossil fuels.

The energy in fossil fuels originally came from the Sun. Plants use the energy in sunlight to make their own food. The energy in plants passes to the animals that eat the plants. (You can learn about these processes in the lesson **Food Webs**.) Some energy remains in plants and animals that die and become fossil fuels. Burning the fossil fuels releases the energy for humans to use.

Look out!

When you think of fossils, you might think of dinosaurs, wooly mammoths, or other large creatures that lived long ago. However, most of the fossils that become fossil fuels are the remains of much smaller plants and animals.

Pressure: the action of force by one object against another object.

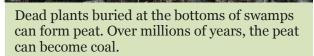
What is sedimentary rock?

To understand how fossil fuels form, it is important to learn more about rocks. Most of the rocks that form layers at Earth's surface are sedimentary rocks. A *sedimentary rock* is made of

Weathering: the breakdown of rock into smaller particles from the effects of wind, water, and ice.

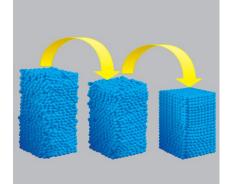
bits of other rocks. Processes such as weathering break down rocks at Earth's surface. These bits of broken rock are called *sediments*. Sediments form layers at the bottoms of valleys and seas. New

layers increase the pressure on older layers. This pressure compacts the sediments. (During *compaction*, bits of rock are pressed tightly together.) Over time, water flows through the compacted sediments. Most of the water on Earth contains dissolved minerals. Some of these minerals stick to the sediments. Eventually, enough minerals stick to form a kind of cement. The cement holds together all the bits of rock to form new rock.


Not all sedimentary rocks form in this way. In other lessons, you will learn more about the different ways that sedimentary rocks form.

How is sedimentary rock involved in the formation of fossil fuels? How long does this process take?

The effects of pressure and temperature can change organic matter into fossil fuels. This does not happen quickly. The transformation takes millions of years.


Coal forms from dead plants that sink to the bottoms of swamps. The organic matter is buried under sediments and slowly transformed into peat. If the peat is buried under more sediment, it can become coal. There are several kinds of coal. Coal that has experienced greater pressure contains more energy.

Some people consider coal to be a type of sedimentary rock. The other kinds of fossil fuels, *oil* and *natural gas*,

are not rocks. They formed from microscopic animals that lived in ancient seas. When these tiny creatures died, they were buried beneath layers of sediments. The sediments became sedimentary rocks. Over millions of years, pressure from the rocks changed some of the organic

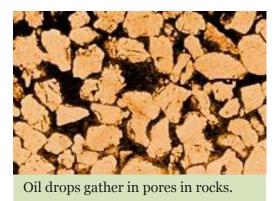
Compaction happens when sediments are packed tightly together. Cementation binds the sediments together to form a rock.

The Formation of Fossil Fuels

5.7A

matter into oil. (Another word for this kind of oil is *petroleum*.) Given enough pressure, organic matter can also become natural gas.

What do you think?


TRY NOW

Heat and pressure are the two main forces that transform organic matter into fossil fuels. Can you think of other examples of heat or pressure changing one type of thing into something else? For example, what happens to dough when it is placed in a hot oven?

Career Corner: What is petroleum engineering?

If you wanted to drill underground and find oil, what would you look for? Oil is not found in

underground lakes filled with black liquid. Instead, the rocks in an oil reservoir have tiny holes called *pores*. Pressure from the layers of rock above the reservoir squeezes drops of oil into the pores. Petroleum engineers look for ways to remove oil from underground rocks. They test the ground to determine the best places to drill. They build pumps to force the oil to the surface. However, these methods remove only a quarter of the oil in any reservoir. How can people get the remaining oil? That's a problem that petroleum engineers are still working on.

Take some time to explore how oil droplets gather in the pores of rocks.

1. To complete this activity, you will need the following materials:

- An eyedropper
- Mineral oil or baby oil
- A paper plate
- A magnifying glass (optional)
- Three different sedimentary rocks. One rock should have extremely small pores. Another rock should have pores that are easily visible. Limestone, sandstone, and shale are recommended.

The Formation of Fossil Fuels

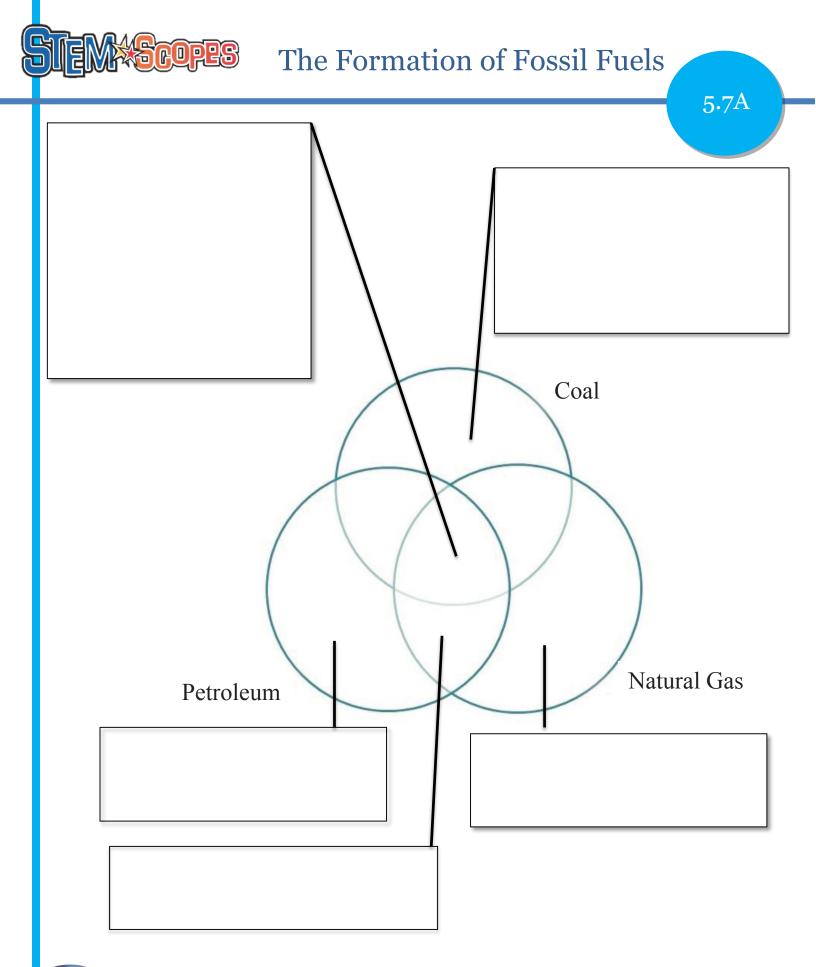
- 2. Spend a few minutes observing each rock. Use a magnifying glass if you have one. Based on your observations, predict which rock will absorb the most oil and which rock will absorb the least oil. Explain your reasons for each prediction.
- 3. Place the rocks on the paper plate. Leave plenty of space between the rocks. Use the eyedropper to place three drops of oil on each rock. (For each rock, place all three drops in the same location.)
- 4. Observe whether the oil sinks into each rock or slides off the rock's surface. (This could take a while. You might want to check on the rocks every 10 or 15 minutes.) Compare your observations to your predictions.

Everyday Life: What is gasoline?

Petroleum is a mix of chemicals. By breaking apart these chemicals, people can turn petroleum into a wide range of products. (This process is called *refining*. Before it has been refined, petroleum is sometimes called crude oil.) One such product is gasoline. When gasoline is burned, it expands very quickly. This expansion releases lots of energy in the form of explosions. A gasoline engine allows people to create and control these explosions. The energy can then be used to propel a car forward. Americans use hundreds of millions of gallons of gasoline each day. Nearly one-fifth of all the energy used in the United States comes from gasoline.

Looking to the Future: Can we run out of fossil fuels?

It is very important for people to use less coal, oil, and natural gas. Removing fossil fuels from the ground pollutes the environment. So does burning them. But there is an even simpler reason for people to find other sources of energy. Fossil fuels are *nonrenewable resources*. This means that we use them much more quickly than nature makes them. Remember: coal, oil, and natural gas take millions of years to form. Yet Americans use billions of barrels of oil each year. Even if people could remove every drop of oil from the ground, eventually all the oil would be gone. You can learn about possible solutions to this problem in the lesson **Alternative Energy**.


What Do You Know?

Fossil fuels include coal, oil, and natural gas. Read the characteristics in the box below. Decide whether each characteristic describes coal, oil, or natural gas. Then write each characteristic in the correct section of the Venn diagram on the next page.

Characteristics of Fossil Fuels	
 forms from organic matter buried	 forms mostly from plant matter forms mostly from microscopic
beneath sediments changed by high pressures and	animals releases energy when burned pollutes the environment when
temperatures exists mostly as a solid exists mostly as a liquid exists mostly as a gas	burned nonrenewable resource

© 2013 Rice University – All Rights Reserved

5.7A

